Pathwise Accuracy & Ergodicity of Metropolized Integrators for SDEs

نویسندگان

  • Nawaf Bou-Rabee
  • Eric Vanden-Eijnden
چکیده

Metropolized integrators for ergodic stochastic differential equations (SDE) are proposed which (i) are ergodic with respect to the (known) equilibrium distribution of the SDE and (ii) approximate pathwise the solutions of the SDE on finite time intervals. Both these properties are demonstrated in the paper and precise strong error estimates are obtained. It is also shown that the Metropolized integrator retains these properties even in situations where the drift in the SDE is nonglobally Lipschitz, and vanilla explicit integrators for SDEs typically become unstable and fail to be ergodic.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Pathwise Accuracy and Ergodicity of Metropolized Integrators for SDEs

Metropolized integrators for ergodic stochastic differential equations (SDEs) are proposed that (1) are ergodic with respect to the (known) equilibrium distribution of the SDEs and (2) approximate pathwise the solutions of the SDEs on finitetime intervals. Both these properties are demonstrated in the paper, and precise strong error estimates are obtained. It is also shown that the Metropolized...

متن کامل

High Order Numerical Approximation of the Invariant Measure of Ergodic SDEs

We introduce new sufficient conditions for a numerical method to approximate with high order of accuracy the invariant measure of an ergodic system of stochastic differential equations, independently of the weak order of accuracy of the method. We then present a systematic procedure based on the framework of modified differential equations for the construction of stochastic integrators that cap...

متن کامل

Postprocessed Integrators for the High Order Integration of Ergodic SDEs

The concept of effective order is a popular methodology in the deterministic literature for the construction of efficient and accurate integrators for differential equations over long times. The idea is to enhance the accuracy of a numerical method by using an appropriate change of variables called the processor. We show that this technique can be extended to the stochastic context for the cons...

متن کامل

Fractional Lévy driven Ornstein-Uhlenbeck processes and stochastic differential equations

Using Riemann-Stieltjes methods for integrators of bounded p-variation we define a pathwise integral driven by a fractional Lévy process (FLP). To explicitly solve general fractional stochastic differential equations (SDEs) we introduce an Ornstein-Uhlenbeck model by a stochastic integral representation, where the driving stochastic process is an FLP. To achieve the convergence of improper inte...

متن کامل

Pathwise uniqueness and continuous dependence for SDEs with nonregular drift

A new proof of a pathwise uniqueness result of Krylov and Röckner is given. It concerns SDEs with drift having only certain integrability properties. In spite of the poor regularity of the drift, pathwise continuous dependence on initial conditions may be obtained, by means of this new proof. The proof is formulated in such a way to show that the only major tool is a good regularity theory for ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2009